Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Newly developed fused-ring electron acceptors (FREAs) have proven to be an effective class of materials for extending the absorption window and boosting the efficiency of organic photovoltaics (OPVs). While numerous acceptors have been developed, there is surprisingly little structural diversity among high performance FREAs in literature. Of the high efficiency electron acceptors reported, the vast majority utilize derivatives of 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (INCN) as the acceptor moiety. It has been postulated that the high electron mobility exhibited by FREA molecules with INCN end groups is a result of close π–π stacking between the neighboring planar INCN groups, forming an effective charge transport pathway between molecules. To explore this as a design rationale for electron acceptors, we synthesized a new fused-ring electron acceptor, IDTCF, which has methyl substituents out of plane to the conjugated acceptor backbone. These methyl groups hinder packing and expand the π–π stacking distance by ∼1 Å, but have little impact on the optical or electrochemical properties of the individual FREA molecule. The extra steric hindrance from the out of plane methyl substituents restricts packing and results in large amounts of geminate recombination, thus degrading the device performance. Our results show that intermolecular interactions (especially π–π stacking between end groups) play a crucial role in performance of FREAs. We demonstrated that the planarity of the acceptor unit is of paramount importance as even minor deviations in end group distance are enough to disrupt crystallinity and cripple device performance.more » « less
-
Hybrid perovskites incorporating conjugated organic cations enable unusual charge carrier interactions among organic and inorganic structural components, but are difficult to prepare as films due to disparate component chemical/physical characteristics ( e.g. , solubility, thermal stability). Here we demonstrate that resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) mitigates these challenges, enabling facile deposition of lead-halide-based perovskite films incorporating variable-length oligothiophene cations. Density functional theory (DFT) predicts suitable organic and inorganic moieties that form quantum-well-like structures with targeted luminescence or exciton separation/quenching. RIR-MAPLE-deposited films enable confirmation of these predictions by optical measurements, which further display excited state behavior transcending traditional quantum-well models— i.e. , with appropriate selection of specially synthesized organic/inorganic moieties, intercomponent carrier transfer efficiently converts excitons from singlet to triplet states in organics for which intersystem crossing cannot ordinarily compete with recombination. These observations demonstrate the uniquely versatile excited-state behavior in hybrid perovskite quantum wells, and the value of integrating DFT, organic synthesis, RIR-MAPLE and spectroscopy for screening/preparing rationally devised complex structures.more » « less
An official website of the United States government
